Your browser doesn't support javascript.
loading
Show: 20 | 50 | 100
Results 1 - 20 de 93
Filter
1.
Bioresour Technol ; 401: 130745, 2024 Jun.
Article in English | MEDLINE | ID: mdl-38677381

ABSTRACT

The interaction mechanisms of silicon (Si) and active ingredient iron (Fe) on cadmium (Cd) removal are still unknown. Herein, the Fe/Si modified biochar (Fe/Si-BC) was synthesized to enhance Cd removal by pre-immersion of Fe and ball milling loading of Si. Detailed characterizations indicated that Fe and Si were successfully introduced into Fe/Si-BC, resulting in the formation of a new metallic silicate (Ca2.87Fe0.13(SiO3)2). The maximum Cd adsorption capacity of Fe/Si-BC (31.66 mg g-1) was 3.6 times and 2.5 times higher than that of Fe-BC (8.89 mg g-1) and Si-BC (11.03 mg g-1), respectively, deriving from an enhancement of Si dissolution induced by Fe introduction. The dissolved Si could capture and combine Cd to form CdSiO3 precipitation, which was strongly supported by the random forest regression and correlation between dissolved Si content and Cd adsorption capacity. This study advances the mechanistic insights into synergistic functions of Si and Fe in Cd removal.


Subject(s)
Cadmium , Charcoal , Iron , Silicon , Solubility , Water Pollutants, Chemical , Water Purification , Cadmium/chemistry , Silicon/chemistry , Charcoal/chemistry , Iron/chemistry , Adsorption , Water Pollutants, Chemical/isolation & purification , Water Purification/methods , Hydrogen-Ion Concentration
2.
EBioMedicine ; 103: 105138, 2024 Apr 27.
Article in English | MEDLINE | ID: mdl-38678809

ABSTRACT

BACKGROUND: Biliary atresia (BA) is a neonatal fibro-inflammatory cholangiopathy with ductular reaction as a key pathogenic feature predicting poor survival. Mucosal-associated invariant T (MAIT) cells are enriched in human liver and display multiple roles in liver diseases. We aimed to investigate the function of MAIT cells in BA. METHODS: First, we analyzed correlations between liver MAIT cell and clinical parameters (survival, alanine transaminase, bilirubin, histological inflammation and fibrosis) in two public cohorts of patients with BA (US and China). Kaplan-Meier survival analysis and spearman correlation analysis were employed for survival data and other clinical parameters, respectively. Next, we obtained liver samples or peripheral blood from BA and control patients for bulk RNA sequencing, flow cytometry analysis, immunostaning and functional experiments of MAIT cells. Finally, we established two in vitro co-culture systems, one is the rhesus rotavirus (RRV) infected co-culture system to model immune dysfunction of human BA which was validated by single cell RNA sequencing and the other is a multicellular system composed of biliary organoids, LX-2 and MAIT cells to evaluate the role of MAIT cells on ductular reaction. FINDINGS: Liver MAIT cells in BA were positively associated with low survival and ductular reaction. Moreover, liver MAIT cells were activated, exhibited a wound healing signature and highly expressed growth factor Amphiregulin (AREG) in a T cell receptor (TCR)-dependent manner. Antagonism of AREG abrogated the proliferative effect of BA MAIT cells on both cholangiocytes and biliary organoids. A RRV infected co-culture system, recapitulated immune dysfunction of human BA, disclosed that RRV-primed MAIT cells promoted cholangiocyte proliferation via AREG, and further induced inflammation and fibrosis in the multicellular system. INTERPRETATION: MAIT cells exhibit a wound healing signature depending on TCR signaling and promote ductular reaction via AREG, which is associated with advanced fibrosis and predictive of low survival in BA. FUNDING: This work was funded by National Natural Science Foundation of China grant (82001589 and 92168108), National Key R&D Program of China (2023YFA1801600) and by Basic and Applied Basic Research Foundation of Guangdong (2020A1515110921).

4.
Article in English | MEDLINE | ID: mdl-38401075

ABSTRACT

Objective: Acute gouty arthritis is the most common rheumatic diseases, and leads to a heavy clinical burden, thereby to explore the treatment effects of pachymaran on acute gouty arthritis and elucidate its mechanism are meaningful. Methods: Eighteen SPF C57BL/6 mice were randomly divided into three groups: the sham group, model group, and pachymaran group (200mg/kg), with 6 mice in each group. The acute gouty arthritis model of mice was established by injecting 0.025 mL sodium urate solution into the right ankle cavity of the mice. The pachymaran group was given 200mg/kg of pachymaran intragastrically, in the sham group and model group were given the same volume of normal saline, respectively, for 7 consecutive days. Blood samples were collected from the orbital venous plexus 1 h after the last administration, all mice were killed, and ankle tissue samples were collected. The pathological changes of mouse ankle synovial tissue were observed by HE staining. The expression levels of IL-1ß and IL-18 inflammatory factors in the serum of mice were determined by ELISA. The ultrastructure of the synovial tissue of the mouse ankle joint was observed by transmission electron microscope. The protein expression levels of NLRP3, ASC, IL-1ß, IL-18, GSDMD, and Caspase-1 in synovial tissue of mouse ankle were detected by Western blot assay. Mouse chondrocytes were cultured and divided into groups I, II, III, and IV. Group I was the control group without any drug intervention. The cells in groups II, III, and IV were stimulated with sodium urate solution (100µg/mL), and groups III and IV were intervened by pachymaran (200µg/mL), among which the NLRP3 agonist Nigericin sodium salt intervened group IV. The expression levels of NLRP3, IL-1ß, GSDMD, and Caspase-1 proteins were detected by Western blot assay, and the apoptosis rate was detected by flow cytometry. Results: Compared with the sham group, the pathological injury of mice ankle synovial tissue in the model group was significantly aggravated, as the membrane was incomplete, mitochondria were swollen, the ridge was unclear or even disappeared, and the pathological injury of mice ankle synovial tissue in the pachymaran group was significantly improved vs model group; the serum levels of IL-1ß and IL-18 were increased in model group vs sham group, and pachymaran decreased these index vs model group; Compared with the sham group, protein expression levels of NLRP3, ASC, IL-1ß, IL-18, GSDMD, and Caspase-1 were significant increased in model group, and pachymaran suppressed these proteins vs model group. The TEM results showed that in model group the wide swelling of mitochondria accompanied by disappearance of mitochondrial cristae vs sham group, and the mitochondrial ridge was slightly damaged, or the mitochondria were only swollen, and the ridge was still clearly visible in pachymaran group. In vitro experiments, Compared with group I, the protein expression levels of NLRP3, IL-1ß, GSDMD, Caspase-1, and the apoptosis rate of chondrocytes in group II were significantly increased. Compared with group II, the protein expression levels of NLRP3, IL-1ß, GSDMD, Caspase-1, and the apoptosis rate of chondrocytes in group III were significantly decreased. Compared with group III, the protein expression levels of NLRP3, IL-1ß, GSDMD, Caspase-1, and the apoptosis rate of chondrocytes in group IV were significantly increased. Conclusion: Pachymaran maintain the structural integrity of joints and alleviate the progression of acute gouty arthritis by inhibiting NLRP3 inflammasome activation and pyroptosis, pachymaran may be used and applied to clinical treatment.

5.
Vet Res ; 55(1): 4, 2024 Jan 03.
Article in English | MEDLINE | ID: mdl-38172978

ABSTRACT

Trichinella spiralis (T. spiralis) is a zoonotic parasitic nematode with a unique life cycle, as all developmental stages are contained within a single host. Excretory-secretory (ES) proteins are the main targets of the interactions between T. spiralis and the host at different stages of development and are essential for parasite survival. However, the ES protein profiles of T. spiralis at different developmental stages have not been characterized. The proteomes of ES proteins from different developmental stages, namely, muscle larvae (ML), intestinal infective larvae (IIL), preadult (PA) 6 h, PA 30 h, adult (Ad) 3 days post-infection (dpi) and Ad 6 dpi, were characterized via label-free mass spectrometry analysis in combination with bioinformatics. A total of 1217 proteins were identified from 9341 unique peptides in all developmental stages, 590 of which were quantified and differentially expressed. GO classification and KEGG pathway analysis revealed that these proteins were important for the growth of the larvae and involved in energy metabolism. Moreover, the heat shock cognate 71 kDa protein was the centre of protein interactions at different developmental stages. The results of this study provide comprehensive proteomic data on ES proteins and reveal that these ES proteins were differentially expressed at different developmental stages. Differential proteins are associated with parasite survival and the host immune response and may be potential early diagnostic antigen or antiparasitic vaccine candidates.


Subject(s)
Trichinella spiralis , Trichinella , Trichinellosis , Animals , Trichinellosis/veterinary , Helminth Proteins/metabolism , Proteomics , Muscles , Larva/metabolism , Antigens, Helminth , Trichinella/metabolism
6.
Minim Invasive Ther Allied Technol ; 33(1): 43-50, 2024 Feb.
Article in English | MEDLINE | ID: mdl-37946501

ABSTRACT

INTRODUCTION: This study aimed to compare early efficacy of UBED and PEID in the treatment of L5/S1 IDH. MATERIAL AND METHODS: Forty-two patients who underwent surgical treatment for L5/S1 IDH were divided into two groups: UBED and PEID. Operation time, complications, VAS/ODI score were recorded. MacNab evaluation was completed one and three months postoperatively. RESULTS: All patients were successfully operated without infection, nerve injury, or huge hematoma in the spinal canal. There were no significant differences in operation time and hospitalization days between the two groups (p > 0.05). All patients were followed up after the operation and low back/leg pain was significantly reduced. VAS for low back pain, VAS for leg pain, ODI scores in both groups one and three months after the operation were significantly lower than pre-operation (p < 0.05). There were no significant differences between one and three months after the operation in both groups (p > 0.05). There were no significant differences in VAS for low back pain, leg pain, ODI score, and overall efficacy between the two groups one and three months post-operation (p > 0.05). CONCLUSION: UBED and PEID have very good early efficacy in treating L5/S1 IDH. Because UBED has a wider vision field and more flexible operation, it can be used as a useful complement to PEID.


Subject(s)
Diskectomy, Percutaneous , Intervertebral Disc Displacement , Low Back Pain , Humans , Intervertebral Disc Displacement/surgery , Low Back Pain/etiology , Low Back Pain/surgery , Treatment Outcome , Retrospective Studies , Lumbar Vertebrae/surgery , Endoscopy
7.
Hepatology ; 79(3): 650-665, 2024 Mar 01.
Article in English | MEDLINE | ID: mdl-37459556

ABSTRACT

BACKGROUND AND AIMS: Hepatoblastoma (HB) is the most common liver cancer in children, posing a serious threat to children's health. Chemoresistance is the leading cause of mortality in patients with HB. A more explicit definition of the features of chemotherapy resistance in HB represents a fundamental urgent need. APPROACH AND RESULTS: We performed an integrative analysis including single-cell RNA sequencing, whole-exome sequencing, and bulk RNA sequencing in 180 HB samples, to reveal genomic features, transcriptomic profiles, and the immune microenvironment of HB. Multicolor immunohistochemistry staining and in vitro experiments were performed for validation. Here, we reported four HB transcriptional subtypes primarily defined by differential expression of transcription factors. Among them, the S2A subtype, characterized by strong expression of progenitor ( MYCN , MIXL1 ) and mesenchymal transcription factors ( TWIST1 , TBX5 ), was defined as a new chemoresistant subtype. The S2A subtype showed increased TGF-ß cancer-associated fibroblast and an immunosuppressive microenvironment induced by the upregulated TGF-ß of HB. Interestingly, the S2A subtype enriched SBS24 signature and significantly higher serum aflatoxin B1-albumin (AFB1-ALB) level in comparison with other subtypes. Functional assays indicated that aflatoxin promotes HB to upregulate TGF-ß. Furthermore, clinical prognostic analysis showed that serum AFB1-ALB is a potential indicator of HB chemoresistance and prognosis. CONCLUSIONS: Our studies offer new insights into the relationship between aflatoxin and HB chemoresistance and provide important implications for its diagnosis and treatment.


Subject(s)
Aflatoxins , Hepatoblastoma , Liver Neoplasms , Child , Humans , Hepatoblastoma/genetics , Hepatoblastoma/metabolism , Transforming Growth Factor beta , Liver Neoplasms/metabolism , Transcription Factors/genetics , Phenotype , Tumor Microenvironment
8.
Pediatr Radiol ; 54(1): 58-67, 2024 01.
Article in English | MEDLINE | ID: mdl-37982901

ABSTRACT

BACKGROUND: Though neoadjuvant chemotherapy has been widely used in the treatment of hepatoblastoma, there still lacks an effective way to predict its effect. OBJECTIVE: To characterize hepatoblastoma based on radiomics image features and identify radiomics-based lesion phenotypes by unsupervised machine learning, intended to build a classifier to predict the response to neoadjuvant chemotherapy. MATERIALS AND METHODS: In this retrospective study, we segmented the arterial phase images of 137 cases of pediatric hepatoblastoma and extracted the radiomics features using PyRadiomics. Then unsupervised k-means clustering was applied to cluster the tumors, whose result was verified by t-distributed stochastic neighbor embedding (t-SNE). The least absolute shrinkage and selection operator (LASSO) regression was used for feature selection, and the clusters were visually analyzed by radiologists. The correlations between the clusters, clinical and pathological parameters, and qualitative radiological features were analyzed. RESULTS: Hepatoblastoma was clustered into three phenotypes (homogenous type, heterogenous type, and nodulated type) based on radiomics features. The clustering results had a high correlation with response to neoadjuvant chemotherapy (P=0.02). The epithelial ratio and cystic components in radiological features were also associated with the clusters (P=0.029 and 0.008, respectively). CONCLUSIONS: This radiomics-based cluster system may have the potential to facilitate the precise treatment of hepatoblastoma. In addition, this study further demonstrated the feasibility of using unsupervised machine learning in a disease without a proper imaging classification system.


Subject(s)
Hepatoblastoma , Liver Neoplasms , Child , Humans , Neoadjuvant Therapy , Hepatoblastoma/diagnostic imaging , Hepatoblastoma/drug therapy , Radiomics , Retrospective Studies , Tomography, X-Ray Computed , Phenotype , Liver Neoplasms/diagnostic imaging , Liver Neoplasms/drug therapy
9.
Microbiome ; 11(1): 262, 2023 Nov 25.
Article in English | MEDLINE | ID: mdl-38001551

ABSTRACT

BACKGROUND: Diet-induced dyslipidemia is linked to the gut microbiota, but the causality of microbiota-host interaction affecting lipid metabolism remains controversial. Here, the humanized dyslipidemia mice model was successfully built by using fecal microbiota transplantation from dyslipidemic donors (FMT-dd) to study the causal role of gut microbiota in diet-induced dyslipidemia. RESULTS: We demonstrated that FMT-dd reshaped the gut microbiota of mice by increasing Faecalibaculum and Ruminococcaceae UCG-010, which then elevated serum cholicacid (CA), chenodeoxycholic acid (CDCA), and deoxycholic acid (DCA), reduced bile acid synthesis and increased cholesterol accumulation via the hepatic farnesoid X receptor-small heterodimer partner (FXR-SHP) axis. Nevertheless, high-fat diet led to decreased Muribaculum in the humanized dyslipidemia mice induced by FMT-dd, which resulted in reduced intestinal hyodeoxycholic acid (HDCA), raised bile acid synthesis and increased lipid absorption via the intestinal farnesoid X receptor-fibroblast growth factor 19 (FXR-FGF19) axis. CONCLUSIONS: Our studies implicated that intestinal FXR is responsible for the regulation of lipid metabolism in diet-induced dyslipidemia mediated by gut microbiota-bile acid crosstalk. Video Abstract.


Subject(s)
Bile Acids and Salts , Gastrointestinal Microbiome , Animals , Mice , Bile Acids and Salts/metabolism , Diet, High-Fat , Gastrointestinal Microbiome/physiology , Lipid Metabolism , Liver/metabolism , Mice, Inbred C57BL
10.
Microorganisms ; 11(10)2023 Oct 09.
Article in English | MEDLINE | ID: mdl-37894175

ABSTRACT

A novel Gram-stain-negative, facultatively anaerobic, and non-motile bacterial strain, designated SDUM287046T, was isolated from the coastal sediments of Jingzi Port of Weihai, China. Cells of strain SDUM287046T were rod-shaped with widths of 0.4-0.5 µm and lengths of 0.7-1.4 µm and could produce flexirubin-type pigments. Optimum growth of strain SDUM287046T occurred at 33-35 °C, pH 7.0, and with 2% (w/v) NaCl. Oxidase activity was negative, but catalase activity was positive. Phylogenetic analysis based on 16S rRNA gene sequence revealed that strain SDUM287046T was most closely related to Aequorivita aquimaris D-24T (98.3%). The main cellular fatty acids were iso-C15:0, anteiso-C15:0, iso-C17:0 3-OH, and summed feature 9 (comprised of iso-C17:1 ω9c and/or C16:0 10-methyl). The sole respiratory quinone was MK-6. The polar lipids consisted of phosphatidylethanolamine (PE), one aminolipid (AL), three unidentified glycolipids (GL), and three unidentified lipids (L). The DNA G + C content was 39.3 mol%. According to the integrated results of phylogenetic, physiological, biochemical, and chemotaxonomic characteristics, we propose that strain SDUM287046T represents a novel species of the genus Aequorivita, for which the name Aequorivita aurantiaca sp. nov. is proposed. The type strain is SDUM287046T (=KCTC 92754T = MCCC 1H01418T). Comparative genomic analysis showed that the 16 Aequorivita species shared 1453 core genes and differed mainly in amino acid metabolism, cofactor metabolism, and vitamin metabolism. Biogeographic distribution analysis indicated that the marine environments were the primary habitat of Aequorivita bacteria.

11.
Antibiotics (Basel) ; 12(9)2023 Aug 29.
Article in English | MEDLINE | ID: mdl-37760676

ABSTRACT

Antibiotics and heavy metals have caused serious contamination of the environment and even resulted in public health concerns. It has therefore become even more urgent to adopt a sustainable approach to combating these polluted environments. In this paper, we investigated the microbial community of marine sediment samples after 255 days of enrichment culture under Cu (II) and lincomycin stress and ZC255 was the most resistant strain obtained. The 16S rRNA gene sequence confirmed that it belonged to the genus Rossellomorea. Strain ZC255 was resistant to 12 kinds of antibiotics, and had a superior tolerance to Cu (II), Pb (II), Ni (II), Zn (II), Cr (III), and Cd (II). Moreover, it exhibits strong bioremoval ability of Cu and lincomycin. The removal efficiency of Cu (II) and lincomycin can achieve 651 mg/g biomass and 32.5 mg/g biomass, respectively. Strain ZC255 was a promising isolate for pollution bioremediation applications.

12.
Arch Microbiol ; 205(10): 331, 2023 Sep 12.
Article in English | MEDLINE | ID: mdl-37698663

ABSTRACT

Known for its species abundance and evolutionary status complexity, family Roseobacteraceae is an important subject of many studies on the discovery, identification, taxonomic status, and ecological properties of marine bacteria. This study compared and analyzed the phylogenetic, genomic, biochemical, and chemo taxonomical properties of seven species from three genera (Psychromarinibacter, Lutimaribacter, and Maritimibacter) of the family Roseobacteraceae. Moreover, a novel strain, named C21-152T was isolated from solar saltern sediment in Weihai, China. The values of 16S rRNA gene sequence similarity, the average nucleotide identity (ANI), the average amino acid identity (AAI), and the digital DNA-DNA hybridization (dDDH) between genomes of the novel strain and Psychromarinibacter halotolerans MCCC 1K03203T were 97.19, 78.49, 73.45, and 21.90%, respectively. Genome sequencing of strain C21-152T revealed a complete Sox enzyme system related to thiosulfate oxidization as well as a complete pathway for the final conversion of hydroxyproline to α-ketoglutarate. In addition, strain C21-152T was resistant to many antibiotics and had the ability to survive below 13% salinity. This strain had versatile survival strategies in saline environments including salt-in, compatible solute production and compatible solute transport. Some of its physiological features enriched and complemented the knowledge of the characteristics of the genus Psychromarinibacter. Optimum growth of strain C21-152T occurred at 37 â„ƒ, with 5-6% (w/v) NaCl and at pH 7.5. According to the results of the phenotypic, chemotaxonomic characterization, phylogenetic properties and genome analysis, strain C21-152T should represent a novel specie of the genus Psychromarinibacter, for which the name Psychromarinibacter sediminicola sp. nov. is proposed. The type strain is C21-152T (= MCCC 1H00808T = KCTC 92746T = SDUM1063002T).


Subject(s)
DNA , Rhodobacteraceae , Chromosome Mapping , Phylogeny , RNA, Ribosomal, 16S/genetics , Rhodobacteraceae/classification
13.
Foods ; 12(15)2023 Jul 28.
Article in English | MEDLINE | ID: mdl-37569146

ABSTRACT

This study aimed to compare the in vitro fermentation characteristics of polysaccharides from Bergamot and Laoxianghuang (fermented 1, 3, and 5 years from bergamot) using the stable in vitro human gut fermentation model. Results showed that bergamot polysaccharide (BP) and Laoxianghuang polysaccharides (LPs) with different surface topographies were characterized as mannorhamnan (comprising Mannose and Rhamnose) and polygalacturonic acid (comprising Galacturonic acid and Galactose), respectively. The distinct effects on the gut microbiota and metabolome of BP and LPs may be due to their different monosaccharide compositions and surface morphologies. BP decreased harmful Fusobacterium and promoted beneficial Bifidobacterium, which was positively correlated with health-enhancing metabolites such as acetic acid, propionic acid, and pyridoxamine. Lactobacillus, increased by LPs, was positively correlated with 4-Hydroxybenzaldehyde, acetic acid, and butyric acid. Overall, this study elucidated gut microbiota and the metabolome regulatory discrepancies of BP and LPs, potentially contributing to their development as prebiotics in healthy foods.

14.
Pediatr Surg Int ; 39(1): 230, 2023 Jul 10.
Article in English | MEDLINE | ID: mdl-37428242

ABSTRACT

AIM: This study aims to explore the application of RENAL nephrometry scoring system in bilateral Wilms tumor (BWT). METHODS: A retrospective review of patients with BWT from January 2010 to June 2022 was performed. Each kidney unit of the BWT was evaluated independently and scored according to RENAL nephrometry scoring system by 2 blinded reviewers, and reviewers were blinded to what surgery the patients ultimately had. Discrepancies were evaluated by a third reviewer to reach a consensus. Tumor anatomical characteristics were summarized and compared. RESULTS: 29 patients with 53 kidney units were included in the study. 53 kidney units included 12 (22.6%) low-complexity, 9 (17.0%) intermediate-complexity, and 32 (60.4%) high-complexity. 2 kidney units (3.8%) had tumor thrombus, and 14 (26.4%) had multiple lesions. A total of 42 kidney units (79.2%) underwent initial nephron-sparing surgery (NSS) and 11 (20.8%) underwent radical nephrectomy. Less complexity tumors were observed in the NSS group. Of the 42 kidney units undergoing initial NSS, 26 were performed in vivo and 16 ex vivo via autotransplantation. The latter group featured a higher complexity. During follow-up, 22 patients survived and 7 died, no statistically significant tumor complexity was observed between the two groups. CONCLUSIONS: The anatomical characteristics of BWT are complex. Despite this study did not indicate that the complexity correlates with prognosis, low-complexity tumors were candidates for NSS, and kidney autotransplantation provided a feasible procedure for high-complexity tumors. A refined system is required due to multiple lesions and tumor thrombus.


Subject(s)
Kidney Neoplasms , Wilms Tumor , Humans , Kidney Neoplasms/surgery , Kidney Neoplasms/pathology , Wilms Tumor/surgery , Wilms Tumor/pathology , Kidney/diagnostic imaging , Kidney/surgery , Nephrectomy/methods , Prognosis , Retrospective Studies , Nephrons/pathology , Nephrons/surgery
16.
Cell Rep Med ; 4(5): 101044, 2023 05 16.
Article in English | MEDLINE | ID: mdl-37196629

ABSTRACT

Erythroblastic islands (EBIs) are the specialized structures for erythropoiesis, but they have never been found functional in tumors. As the most common pediatric liver malignancy, hepatoblastoma (HB) requires more effective and safer therapies to prevent progression and the lifelong impact of complications on young children. However, developing such therapies is impeded by a lack of comprehensive understanding of the tumor microenvironment. By single-cell RNA sequencing of 13 treatment-naive HB patients, we discover an immune landscape characterized by aberrant accumulation of EBIs, formed by VCAM1+ macrophages and erythroid cells, which is inversely correlated with survival of HB. Erythroid cells inhibit the function of dendritic cells (DCs) via the LGALS9/TIM3 axis, leading to impaired anti-tumor T cell immune responses. Encouragingly, TIM3 blockades relieve the inhibitory effect of erythroid cells on DCs. Our study provides an immune evasion mechanism mediated by intratumoral EBIs and proposes TIM3 as a promising therapeutic target for HB.


Subject(s)
Hepatoblastoma , Liver Neoplasms , Child , Humans , Child, Preschool , Erythroblasts/physiology , Hepatitis A Virus Cellular Receptor 2 , Erythropoiesis/genetics , Tumor Microenvironment
17.
Mater Horiz ; 10(8): 3101-3113, 2023 Jul 31.
Article in English | MEDLINE | ID: mdl-37218512

ABSTRACT

Metamaterials present great potential in the applications of solar cells and nanophotonics, such as super lenses and other meta devices, owing to their superior optical properties. In particular, hyperbolic metamaterials (HMMs) with exceptional optical anisotropy offer improved manipulation of light-matter interactions as well as a divergence in the density of states and thus show enhanced performances in related fields. Recently, the emerging field of oxide-metal vertically aligned nanocomposites (VANs) suggests a new approach to realize HMMs with flexible microstructural modulations. In this work, a new oxide-metal metamaterial system, CeO2-Au, has been demonstrated with variable Au phase morphologies from nanoparticle-in-matrix (PIM), nanoantenna-in-matrix, to VAN. The effective morphology tuning through deposition background pressure, and the corresponding highly tunable optical performance of three distinctive morphologies, were systematically explored and analyzed. A hyperbolic dispersion at high wavelength has been confirmed in the nano-antenna CeO2-Au thin film, proving this system as a promising candidate for HMM applications. More interestingly, a new and abnormal in-plane epitaxy of Au nanopillars following the large mismatched CeO2 matrix instead of the well-matched SrTiO3 substrate, was discovered. Additionally, the tilting angle of Au nanopillars, α, has been found to be a quantitative measure of the balance between kinetics and thermodynamics during the depositions of VANs. All these findings provide valuable information in the understanding of the VAN formation mechanisms and related morphology tuning.

18.
Food Funct ; 14(7): 3379-3390, 2023 Apr 03.
Article in English | MEDLINE | ID: mdl-36943742

ABSTRACT

To investigate the prebiotic potential of two Laminaria japonica polysaccharide (LJP) fractions with different molecular weights and structures, we conducted in vitro simulated digestion and fermentation with hyperlipidemia-associated human gut microbiota. The results indicated that the LJP fraction with higher molecular weight (HLJP) appeared to have a more complex monosaccharide composition and microstructure than did the LJP fraction with lower molecular weight (LLJP), and both fractions could not be digested by in vitro simulated digestion. After in vitro fermentation, HLJP generated more short-chain fatty acids (SCFAs) and showed stronger ability to regulate core metabolites. Intriguingly, LLJP is better at promoting the proliferation of Akkermansiaceae, while HLJP is more effective in reducing the Firmicutes/Bacteroidetes ratio and increasing the content of Bacteroidaceae and Tannerellaceae. The present study indicates that LLJP and HLJP may have probiotic effects through different approaches and these differences may be related to the molecular weight and structure of the polysaccharides.


Subject(s)
Gastrointestinal Microbiome , Laminaria , Humans , Laminaria/chemistry , Polysaccharides/chemistry , Fatty Acids, Volatile/metabolism , Fermentation , Metabolome
19.
Front Pediatr ; 11: 1120797, 2023.
Article in English | MEDLINE | ID: mdl-36816368

ABSTRACT

Introduction: Successful management of bilateral Wilm's tumor (BWT) involves a radical resection while preserving enough normal kidney tissue. Nephron-sparing surgery often results in an R1/R2 resection with a high recurrence rate in children with huge or multiple tumors, or tumors proximity to the renal hilum. In contrast, kidney autotransplantation can completely resect the tumor while maintaining homeostasis and preserving the patient's healthy kidney tissues. Methods: We summarized the clinical data of 8 synchronous BWT patients who underwent kidney autotransplantation at the First Affiliated Hospital of Sun Yat-sen University from 2018 to 2020. Ex vivo tumor resection and kidney autotransplantions were performed on 11 kidneys. The baseline characteristics, perioperative management, and survival status were reported. Results: Nephron-sparing surgeries were performed on 5 kidneys in vivo. Among all the 8 patients, six of them (75%) received staged operation and the other 2 patients (25%) received single-stage operation. No residual tumors were found on the postoperative imaging in all the 8 patients. In total, 6 (75%) patients occurred complications after the autotransplantation, among which, 2 (33.3%) patients had complication of Clavien-Dindo grade IIIa, and 4 (66.7%) patients had complication of grade < 3. During the 38 months of follow-up, 87.5% (7/8) of patients were tumor-free survival with normal renal function. One patient died from renal failure without tumor recurrence. Discussion: Therefore, our study indicated that autologous kidney transplantation can be an option for patients with complex BWT if the hospital's surgical technique and perioperative management conditions are feasible.

20.
Water Sci Technol ; 87(3): 761-782, 2023 Feb.
Article in English | MEDLINE | ID: mdl-36789716

ABSTRACT

Chlorinated hydrocarbons (CHCs) are often used in industrial processes, and they have been found in groundwater with increasing frequency in recent years. Several typical CHCs, including trichloroethylene (TCE), 1,1,1-trichloroethane (TCA), carbon tetrachloride (CT), etc., have strong cytotoxicity and carcinogenicity, posing a serious threat to human health and ecological environment. Advanced persulfate (PS) oxidation technology based on nano zero-valent iron (nZVI) has become a research hotspot for CHCs degradation in recent years. However, nZVI is easily oxidized to form the surface passivation layer and prone to aggregation in practical application, which significantly reduces the activation efficiency of PS. In order to solve this problem, various nZVI modification solutions have been proposed. This review systematically summarizes four commonly used modification methods of nZVI, and the theoretical mechanisms of PS activated by primitive and modified nZVI. Besides, the influencing factors in the engineering application process are discussed. In addition, the controversial views on which of the two (SO4·- and ·OH) is dominant in the nZVI/PS system are summarized. Generally, SO4·- predominates in acidic conditions while ·OH prefers neutral and alkaline environments. Finally, challenges and prospects for practical application of CHCs removal by nZVI-based materials activating PS are also analyzed.


Subject(s)
Groundwater , Trichloroethylene , Water Pollutants, Chemical , Humans , Iron , Water Pollutants, Chemical/analysis , Trichloroethylene/analysis , Oxidation-Reduction
SELECTION OF CITATIONS
SEARCH DETAIL
...